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Abstract-This paper presents an analytical method ofdetermining the periodic solutions in mech·
anical discrete-i:ontinous systems governed by a system ofnonlinear ordinary and partial differential
equations with delay. Contrary to the classical perturbation method. the solutions are sought as
power series in relation to two small independent parameters. One of the parameters is related to
nonlinearity. the other. to dcl;ty.

I. INTRODUCTION

The c1assic••1perturbation method, which consists of seeking periodic solutions in the form
of power series in relation to arbitrarily chosen small parameters, is broadly dealt with in
Malkin (1956), lakubovich and Stan:hinskii (1972). Giacaglica (1972), Nayfeh and Mook
(1979) .and Naylch (1981). It allows for the determination of periodic solutions for systems
described by nonlinear ordinary dillcrential equations with constant or periodically varying
coellicients. The method is based on bringing various nonlinearities of panlmetric excitation
to one small parameler. However, in real mechanical systems the parameters describing
nonlinearities or p.trametric excitations arc independent, and the results offormally bringing
them to one parameter arc not always satisfactory.

This paper deals with mechanical discrete.;;onlinuous systems with delay as well as
with the occurrence of various kinds of physical or geometric nonlinearities. An example
of such a system is a furnace, where the temperature is controlled by a thermoregulator.
The furnace is a nonlinear continuous system while the thermoregulator is usually an inertial
element with delay (a discrete system). Another example is the nonlinear vibration of beams
joined to mechanical discrete systems. In this case, delay is characterized by inertial friction
in the materials. These types of nonlinear discrete-continuous systems are governed by
nonlinear ordinary and partial ditferential equations with delay. These equations are the
subject of this paper, which is the continuation of the author's previous studies covering
nonlinear discrete systems based on an analytical approach (Awrejcewicz, 1986, 1988).

2. METHOD

Consider the system of equations of the form

a1
(/."X) _ 1i11u~~.X) f( CU(/I.X) OU(/I.X) • _ )
~, - C a' + &,X,U(/\.X), :l ' iJ ,y(ll r)
eli x· u/, x

LI[y(/), rr) = q>[r., )'(/,), u(t\ -r. e)l

with homogeneous boundary conditions

(I)
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(2)

where:

I is a certain nonlinear function assuming zero for x = 0 and x = I;
L I(}', t,) is a linear differential operator with delay of the form

l' R
LI[y, t,] = L L a,,/PI(t l -t,), to =0, 1', > 0;

,-0,.0

is a nonlinear differential operator with delay, which is because y(t) is of order
lower than P, and considering u(t-1', ~) of order not higher than two. with
,e[O, I].

Next we assume that the nonlinear operators I and <P are continuous in x with continuous
first derivatives, considering other arguments in a certain sufficiently large range of their
variations. Moreover. we assume that the delays occurring in the system are small. Thus
we have

(3)

Further calculations will be limited only to the first three terms of the series (3). Substituting
(3) in (I). we obtain

(4)

where the functions II and cP I are obtained respectively from I and cp, considering (3).
Let the nonlinear functions II and <PI assume zero when £ = l' =0, which means that

the nonlinear system of differential equations (4) is then reduced to a linear system.
Then. the problem becomes the analysis of the system of equations (4) with two

independent small parameters l' and e.
Let us further assume that the characteristic equation adequate for the linear part of

the second equation of the system is of the form

P R

0(p) = L L ap,pPe- r
""

p-o,.o
(5)

and that its eigenvalues are different from zero and have purely imaginary values. This
means that oscillations are not generated by the discrete system. The starting solution for
the analytical approximate method, with £ = O. t' = 0 is of the form

U?)(t".,,) = f sin niX [a~.I"cos (n~otl)+h~.l" sin (n~otd]. y~.l(tl) = 0 (6)
".1

where the operator (.) denotes l' or e, a?I" and b~.I" are amplitudes, and To = 2n!t:%o = 21fe
is the period of oscillation of the linear part of the system described by the first equation
(4). For £ :F 0 and t :F 0 in a satisfactorily close neighbourhood ofzero, we seek the periodic
solution of the system (4) a little different from (6). Generally, the contribution of higher
harmonics to the solution quickly decreases, and it is sufficient to consider only a few of
the first harmonics in the calculations. The period sought is equal to
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T = To[1 +,,(&, r)]

and evidently depends on both of the perturbation parameters,
Let us introduce a new dimensionless time I according to the equation

which allows us to seek a periodic solution with period 21t,
Substituting (8) in (4), we obtain the equation

where:
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(7)

(8)

(9)

The nonlinear functions tP and F as well as the solutions sought, y, u and 'I, are presented
in the form of power series

tP ::: tPo +etP. +&2tP..+,. ,+ rtP, + r2tP..+".+ r&tPre +' ,"
F::: Fo+eF.+e2F..+" ,+.F, +.2F..+'· '+!l:Fu +, ..,
y =Yo+ty.+e2y..+"'+.y,+1:2y.. +' ·'+1:ey.. +"',

u::: uo+£u.+e2u.. +'· '+1:U,+1:2u,. +·' '+.&U,,+"',

'I ::: '10 +e'l. +&2'1.. +...+ r'l, + r 2'1.. +... + r&'1" +, ,'. (10)

Having substituted (10) in (9), and after having equated the expressions representing the
same powers of the small parameters. and & as well as the same powers of their products
t"(nt. ,= 1.2,., .). the recurrent systems of linear equations are obtained. While solving
the subsequent equations of the system, we use the balance of harmonics method. Let us
assume that we determined the first system of recurrent equations standing next to (.),
where the operator (.) means. or e. Having substituted the solutions (6) for the nonlinear
functions Fl.' and tP(., (this time for the equation we assume I I ::: I and !xo = I) and having
developed these functions into a Fourier series. we obtain

'Xl ~ • n7tX (, ( , '
f(.,(I. ;t) == L t... sm -,- (A nk cos (kl) + Bnk SID (kl)],

p_o.\:_o
X>

tPl.,(I) ::: L [C~·' cos (kl) + D~·' sin (kl)] ,
.\:-0

(tI)
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where:
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., II I~· mrx
A~k) = ~ Jo Jo F1ol(I.X) sin-y-cos (kl) dldx.

2

111'·(0) - • nnx .
B nk = nJ 0 0 F1o.(I.X) sm-,-sm (kl)dldx.

I i~·C~O) = - <Plo)(t) cos (kl) dl.
n 0

(12)

We seek the solutions of the system of equations formed by comparison of expression
next to (.) in the form of

N,. fin\:
U'o/(t.x) = L L sin-y-[aIO)nkcOs(kt)+hlo.nk sin (kt)].

n- I k s 0,.
)'10,(1) = L [C101k COSkl+cl101k sin (kt)].

k-O

The solution of the first equation of system (9) is explicitly determined only when

( 13)

(14)

Conditions (14) allow for neglecting the resonance terms which exponentially grow
with time (Malkin. 1956). Thus we obtain 2N of the equations whereas the unknowns
a~olf' b~o's and 'Ie are 2N+ 1. In this case. however. dealing with an autonomous system. we
may assume that blolN = O. Equations (14) have explicit solutions when

( 15)

3. EXAMPLE

Consider the discrete-continuous system described by the equations

. _ dy (OU(I'.X) a~II(1I'X») (aU(II.X»)J
-r.rc5(x-x)d- +t :') - -a--'- -t c .

I, ct l x· II

d~)' d)' _
-d' + IOr.

d
- +400r(I,) = IOeu(II'x), U(I"O) = U(ll' I) = 0 (16)

Ii I, .
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where, for the sake ofsimplification of the calculations, the delay Tand the small parameter
I: are in the evident form in eqn (I) and xe [0, I] is the association point of the discrete
system with the continuous one. In the discrete system described by the second equation of
the system (16) accompanied by the lack of interaction on the side of the continuous system
and as a result of damping in the system, oscillations cannot occur. The oscillations are
excited in the continuous system because of damping of the Van der Pol type described by
the second term on the right-hand side of the equality sign. For T= e = 0 the period of this
solution is equal to To = 7t/15. We seek the periodic solution of system (16) with period T,
inconsiderably different from the period To. According to the considerations, let us first
make use of the independent variable

1+ '1(e, T)
I. = 30 I.

Having substituted (17) in (16), we obtain

(17)

(18)

C!U(I.X) I 2(}2U(I.X) (1+'1) 2 CU(I,x) (1+'1)2 _
OIZ = 7t Z (l +'1) Ox2 +e~[O.003-U(I,X)]-(}-I-+e 900 l>(x-x)y(l)

1+'1 ~ _ dy 1+'1 OU(I,x) (1 +'1)2 02U(I.X) 30 (OU(I.X»)3.
-I:T30u(x-X)dl+t30-(}-I--t~a.\:2 -t l +'1 -(}-I- ,

d 2y I dy 4 2 _ I: !_
dlf + I: j (I + '1) dt + 9(I + '1) y(l) - 90 (1 + '1) u(I, x).

The parameters t and I: are treated as independent. Assuming one of them to be equal
to zero. the problem is reduced to the classical perturbation method.

We assume the starting solution in the form of

dO) = u~O) +u~O) = a~O) sin 7tXCOS l+a~O) sin 7tXCOS I,

/0) = O. (19)

The amplitude sought, a~O), will be determined from the first recurrence equation
formed by the comparison of expressions next to the parameter e, whereas the amplitude
a~OI will be determined from the first recurrent equation formed by the comparison of
expressions next to the parameter T.

From the first equation of the system (18), having equated the expressions next to the
parameters T, we obtain

Having equated the resonance terms to zero, we obtain

'1t = 0.0055

a~O) = 0.044.

The solution ofeqn (20) is

3 ( (OJ)3 • 3' 3. . 3 .
Ut = 128 at SID 7tXSIDI- 128SID7tXSID t+a,SID7tXCost,

(20)

(21)

(22)
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where the amplitude a., will be determined from the subsequent recurrent equation. This
equation is of the form

C2u.. I il 2u" 2 il 2u. 2 02U~0) 1 ou~O) lou.
ot2 == n2 ex2 + n2 'I. 0.'"(2 + n2 'In ox2 + 30 'I. at + 30 at

1 02U• 2 C2~0) 0(UI01 )2U• a(u~O)3

- 900 ox2 - 900 '1. ox2 - 90 at +30'1.~. (23)

From eqn (23). having equated the resonance terms to zero. we obtain

t (0) 1 9 ( (0) 2
- 3017.a. - 30 a. - 16 a. ) a, = O.

Solving the system of equations (24)

a. = .OO2סס.0

'In = - .OO6סס.0

From the second equation of system (18). we obtain

y, == O.

(25)

(26)

Let us now determine the perturbation equations formed due to the comparison of the
expressions next to the parameter e.

From the first equation of system (18). we obtain

(27)

and having equated the resonance terms to zero. we obtain a system ofalgebraic equations.
Solving this. we have

a: fll = 0.12649

r[. =O.

The solution of (27) is

u. = a. sin (nx) cos t - 5.10 -1 sin 3nxcos t.

From the second equation of system (18). we obtain

We seek the solution of eqn (30) in the form

Y. = h. cos t+c. sin t.

(28)

(29)

(30)

(31)
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Having substituted (31) in (30), we find

b. = -0.088 sin (x.i),

c. = o.

831

(32)

From the second equation of the system (18), having equated the expressions next to 6
2
,

we obtain

d 2Ya 4 lb' 1 . ( _)
dt2 + 9Ya = 3 .stnt+ 90 a• sm xx cost.

We seek the solution of eqn (33) in the form

Ya =bacost+casint.

Having substituted (34) in (33). we calculate

b iJ. . ( -)
go = - 50sm xx.

C,.. == - 0.0048 sin xx.

(33)

(34)

(35)

From the first equ::ltion of system (18). having equated the expressions next to S2, we
obtain

:\2 I ."12 2:\2 (0) :\ I :l I iJ (0)v u"" v u.. v u. vUe (1I) ,vU. (0) U. ~( _
_... -- = -- ---- + --" --~ +00001 -- - ··_(u )- --- - '-u u -- +y (I ~-X)
vt l 1[2 iJ.~l 1£2"1'" VX l • vt 30" vf 15" ot •. .

(36)

From eqn (36) we finally calculate

a. = 0,

(37)

Analogous calculations make it possible to determine the recurrent equations occurring
with the combinations ffr/ where k ~ I and I ~ I.

4. CONCLUDING REMARKS

The method presented in the paper enables us to determine the periodic solutions
in discrete-i:ontinuous systems described by nonlinear differential ordinary and partial
equations with delay. Solutions as well as their period were sought in the form of power
series in relation to two small independent parameters t and s. Assuming one of them to
be equal to zero. the problem is reduced to the classical perturbation method.

Thanks to this method, the period of the equations was determined as a function of
two parameters t and s. It enables certain optimization criteria to be realized; for example,
ensuring a constant value for the period in a certain chosen range of changes of the
parameters t and s, or the choice of parameters rand s so as to increase or decrease the
frequency of vibration according to a previously-chosen criterion.
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